Abstract

It has been proposed that circular RNAs (circRNAs) play crucial roles in the initiation and progression of various cancers including breast cancer. Our study aimed to determine the function and regulatory mechanism of hsa_circ_0000517 in breast cancer. qRT-PCR was applied to determine hsa_circ_0000517 expression in breast cancer cells. The circular structure of hsa_circ_0000517 was confirmed using RNase R digestion assay. The subcellular distribution of hsa_circ_0000517 was analyzed using nuclear mass separation assay. Effects of hsa_circ_0000517 on the malignant behaviors of breast cancer cells were determined using CCK-8, colony formation assay, flow cytometry analysis, caspase-3 activity assay, and Transwell invasion assay. Bioinformatics analysis, luciferase reporter assay, and RIP were used to predict and confirm the interaction between hsa_circ_0000517 and miR-326. Bioinformatics analysis was used to search the possible targets of miR-326. Hsa_circ_0000517 was upregulated in breast cancer tissues and cells. Hsa_circ_0000517 was a stable circularized transcript that was preferentially distributed in the cytoplasm. Hsa_circ_0000517 knockdown inhibited cell proliferation, colony formation ability, and invasion and triggered apoptosis in breast cancer cells. Hsa_circ_0000517 acted as a sponge of miR-326 to suppress its expression. miR-326 inhibition abolished the effects of hsa_circ_0000517 knockdown on the malignant behaviors of breast cancer cells. Totally 17 genes were identified as the potential targets of miR-326 in breast cancer. In conclusion, hsa_circ_0000517 silencing repressed breast cancer progression by upregulating miR-326 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call