Abstract

Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood-brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.