Abstract

To investigate the effects of high ambient lighting on refraction and ocular biometry in guinea pig models of form-deprivation myopia (FDM). Forty 3-week-old guinea pigs were randomly assigned to groups exposed to either high light (HL, 10,000 lux) or normal light (NL, 500 lux) with normal vision or form deprivation. Throughout the 10-week rearing period, animals were exposed to high light or normal light for 12 hours with a 12-hour light/dark cycle. Refraction, axial length (AL), and radius of corneal curvature (CCR) were measured by cycloplegic retinoscopy, A-scan ultrasonography, and keratometer, respectively. At the end of treatment, form-deprived eyes under high ambient lighting exhibited more hyperopic refraction and shorter AL than those under normal ambient lighting (2.06 ± 1.68 diopters [D; mean ± SD] vs. -0.59 ± 1.56 D, P < 0.001; 8.36 ± 0.13 mm vs. 8.56 ± 0.16 mm, P < 0.001). Deprived eyes under high ambient lighting were relatively more myopic than their contralateral control eyes at the end of treatment (2.06 ± 1.68 D vs. 5.44 ± 0.66 D, P < 0.001). High lighting induced a significant hyperopic shift in normal eyes after 4 weeks of exposure. There were no significant differences in CCR between eyes exposed to high and normal light, nor between deprived eyes and contralateral eyes. High ambient lighting could retard, but not fully inhibit, the development of FDM. High light levels contributed to a greater hyperopic shift in normal eyes during the first 4 weeks of treatment. Corneal curvature was unaffected by either high ambient lighting or form deprivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call