Abstract
IntroductionThe objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy.MethodsFunctional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis.ResultsFunctional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome.ConclusionFollowing focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy.Electronic supplementary materialThe online version of this article (doi:10.1007/s00234-014-1412-5) contains supplementary material, which is available to authorized users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.