Abstract

Abstract Following the successful launch of the Spanish PAZ mission the proof of concept experiment “Radio Occultation and Heavy Precipitation with PAZ” (ROHP-PAZ) started operating in May 2018. The ROHP-PAZ observations demonstrated that precise measurements of the phase shift between horizontal and vertical polarizations from Global Navigation Satellite System (GNSS) L-band signals are sensitive to oriented hydrometeors along the ray paths. While this differential phase shift measurement as a function of time has proven very useful, the regular radio occultation (RO) intermediate products from different polarized channels, such as bending angle and phase retrievals on the domain of impact parameter, have never been exploited. In this research, we studied the characteristics of polarimetric phase and bending angle difference retrieved by the radio-holographic (RH) method to mitigate atmospheric multipath effect and to explore their use in data assimilation. To validate RH approach in polarimetric retrievals, we performed end-to-end simulations where the hydrometeors are modeled by the effective refractivity with different horizontal extents. The simulation results demonstrate that the strong precipitation (>15 mm h−1) with 40-km horizontal extent can be detected with the retrieved bending angle shift. The calibration process on the impact parameter domain has also been developed to extract the differential phase and bending angle shift from the actual polarimetric RO data. Statistics from the PAZ data shows that the mean retrieved RH polarimetric phase shift with various horizontal extent is approximately proportional to the tangent point location rain rate at a ratio of 0.02 rad (mm h−1)−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call