Abstract

Surface activated bonding (SAB) is a novel method for the precise joining of dissimilar materials. It is based on the concept that two atomically clean solid surfaces can develop a strong adhesive force between them when they are brought into contact at high vacuum condition without high deformation at a 40~90%. With this SAB process, the effects of heat treatment on the bonding strength of surface-activated bonding (SAB)-treated copper-nickel fine clad metals were investigated. An increase in the SAB rolling load of the copper-nickel fine clad metals increased the peel strength after heat treatment, indicating that increases in the SAB rolling load decreased the interface voids formed by initial micro-range surface roughness between the clad materials in the SAB cladding process. Unlike conventional cold rolling, outstanding interface diffusion between the clad materials was not observed after heat treatment. In addition, the peel strength increase of the clad metals compare with initial peel strength increased with SAB rolling load (<1% reduction ratio at a roll load of 5000 kgf ) up to 3.99 N/mm after heat treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.