Abstract

By scanning electron microscopy, we have observed that a 20-min heat shock at 37 degrees C, although not lethal, causes extensive damage to the epidermis of 30-h and 2-d (post-fertilization) Xenopus laevis larvae. The primary effects of heat shock are the apical swelling of the epidermal cells, giving the epidermis a "cobblestone" appearance, and the selective shedding of the ciliated cells. The shed cells may be cell fragments, however, because some of them are anucleate. Shed cells also exhibit the enriched synthesis of a group of heat shock proteins of 62,000 D molecular weight, suggesting that these proteins are specific to the shed cells. Prolonged heat shock of these larvae (i.e., 30 min at 37 degrees C) results in the complete disintegration of the epidermis, followed by larval death. At later stages of development (3-d and 4-d post-fertilization), the epidermis becomes more resistant to heat-induced damage inflicted by a 20-min heat shock. This increase in resistance coincides with the development of large secretory cells and the loss of ciliated cells in the epidermis and thus parallels a change in the state of histological differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.