Abstract

In this paper we study a system of nonlinear parabolic equations representing the evolution of small perturbations in a model describing the combustion of a porous solid. The novelty of this system rests on allowing the fluid and solid phases to assume different temperatures, as opposed to the well-studied single-temperature model in which heat is assumed to be exchanged at an infinitely rapid rate. Moreover, the underlying model incorporates fluid creation, as a result of reaction, and this property is inherited by the perturbation system. With respect to important physico-chemical parameters we look for global and blowing-up solutions, both with and without heat loss and fluid production. In this context, blowup can be identified with thermal runaway, from which ignition of the porous solid is inferred (a self-sustaining combustion wave is generated). We then proceed to study the existence and uniqueness of a particular class of steady states and examine their relationship to the corresponding class of time-dependent problems. This enables us to extend the global-existence results, and to indicate consistency between the time-independent and time-dependent analyses. In order to better understand the effects of distinct temperatures in each phase, a number of our results are then compared with those of a corresponding single-temperature model. We find that the results coincide in the appropriate limit of infinite heat-exchange rate. However, when the heat exchange is finite the blowup results can be altered substantially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.