Abstract

Growth is a fundamental life history trait in all organisms and is closely related to individual fitness. In altricial birds, growth of many traits is restricted to the short period between hatching and fledging and strongly depends on the amount of food that parents deliver and the extent of hatching asynchrony. However, empirical studies of energy allocation to growth of different body size traits as a function of hatching asynchrony are scarce. We studied growth and mortality of Eurasian Hoopoe Upupa epops, a species with a long breeding season and high brood size variance, whose nestlings show pronounced hatching asynchrony, in order to test how hatching asynchrony affects different growth traits in the context of territory quality, season and brood size. The growth of five body traits (body mass, and lengths of tarsus, third primary, bill and longest crest feather) was investigated to understand how it was affected by brood size, hatching date and order, and territory quality. In total, 241 nestlings from 39 nests were measured every 4 days in 2014 in south‐western Switzerland. Brood size, hatching date and hatching order had the strongest influence on growth trajectories, although tarsus growth was only marginally affected by these variables. Nestlings that hatched earlier than their siblings were heavier and had longer third primaries, bills and crest feathers compared with later‐hatched siblings. In territories of high quality, hatching order differences disappeared for body mass growth, but persisted for lengths of third primary, bill and crest feathers. Brood size was inversely associated with third primary, bill and crest feather lengths, but positively associated with body mass. Nestling mortality was higher in later‐hatched nestlings and in broods that were raised in territories of lower quality. Our study shows that in nestlings, energy was allocated differentially between body traits and this allocation interacted with hatching order and territory quality. Rapid mass gain by nestlings was prioritized in order to increase competitive ability. Our results provide support for the brood reduction hypothesis as an explanation of hatching asynchrony in Hoopoes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.