Abstract

Normal thermoregulatory function is believed to be modulated by thermosensitive neurons in the preoptic region of the anterior hypothalamus and other sites within the central nervous system including the spinal cord. Previous evidence has demonstrated modulation of segmental spinal cord thermoregulatory mechanisms from more rostral central nervous system sites. The ability of the volatile anesthetics to disrupt normal thermoregulatory function and produce shivering-like activity during emergence is well documented. The purpose of the current investigation was to examine the action purpose of the current investigation was to examine the action of the volatile anesthetics halothane, isoflurane, and enflurane on thermoregulatory responses produced at the preoptic region and spinal cord. Cats were chronically instrumented with bilateral cannulas allowing selective heating and cooling of the preoptic region. Electrodes were implanted in hindlimb and forelimb muscles for electromyographic (EMG) analysis. Animals underwent selective heating and cooling of the preoptic region in the awake state, during volatile agent anesthesia and during emergence. In a separate series of animals, pontine-transected cats with epidural thermodes and a thermocouple underwent alternate heating and cooling of the spinal cord. Heating and alternate heating and cooling of the spinal cord. Heating and cooling was performed in the nonanesthetized state, at graded concentrations of halothane, and during emergence. In all animals deep core peritoneal temperature, epidural spinal cord temperature, forelimb and hindlimb EMG activity were continuously recorded and digitally processed. EMG responses in both experiments were quantitated and analyzed for power spectral density. In the chronically prepared animals, heating and cooling of the preoptic region in the conscious state resulted in appropriate thermoregulatory responses, including shivering-like activity and increased EMG power with preoptic region cooling. Halothane, isoflurane, and enflurane each abolished these thermoregulatory responses. During emergence from anesthesia, however, the typical spontaneous increases in EMG power observed at normothermia were significantly attenuated by heating of the preoptic region and augmented by cooling of the preoptic region. In the acutely prepared animals, cooling of the spinal cord produced graded increases in EMG activity. Increased concentrations of halothane dose-dependently diminished this response to cooling of the spinal cord. During emergence, cooling of the spinal cord resulted in a shivering response similar to those observed during control conditions. The ability of preoptic region heating and cooling to modulate postanesthetic shivering implies that while thermoregulatory pathways remain intact, volatile anesthetics produce an imprecision in the control of thermoregulatory responses at the level of the anterior hypothalamus. Attenuation of shivering-like responses generated at spinal cord levels in pontine-transected cats implies a significant blunting action of thermoregulatory response mechanisms at the level of the spinal cord or lower brain stem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.