Abstract

A new dinuclear complex of oxidovanadium(IV), namely [(VO)2(HL)(μ-O)] (1), has been synthesized by the reaction of VO(acac)2 with the heptadentate N4O3-donor Schiff base ligand, 2-(5-Bromo-2-hydroxyphenyl)-1,3-bis(2-(5-bromo-2-hydroxybenzylideneamino)ethyl)imidazolidine (H3L). The complex has been characterized by elemental analysis, spectroscopic methods and single-crystal X-ray diffraction. The latter technique revealed that the vanadium ions have distorted octahedral geometry and are connected together by oxido and phenolic oxygen atoms. The bridging oxido ligand shares the equatorial positions of the two metal centers while the oxygen atom of the bridging phenol group connects the axial positions. The catalytic activity of this complex has been tested for the oxidation of some benzyl alcohol derivatives by using H2O2 as a green oxidant. In order to maximize the yields, the effects of various influential parameters in catalytic reactions such as the oxidant-to-substrate molar ratio, the temperature and the solvent, were studied. Moreover, the electronic and steric effects of halogen substituents on the phenyl group of the substrate were also explored by analyzing the oxidation of benzyl alcohol derivatives with F, Cl and Br atoms in the relative para-position (electronic effect), and of another set of substrates with a Cl substituent in relative ortho-, meta, and para-positions (steric effect). The results of these catalytic studies show that complex 1 catalyzes the oxidation of benzyl alcohol derivatives to the corresponding benzaldehydes with little amounts of the benzoic acid being detectable in the reaction mixture. Both the reaction conditions and the substituents on the phenyl group of the benzyl alcohols affect the selectivity and the activity of this catalytic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.