Abstract

The irradiation of ester 1 in methanol and chloroform does not yield any photoproducts, whereas the photolysis of 1 in dry argon-saturated benzene produces cyclobutanol 4, which is converted to lactone 5 by the addition of HCl. Laser-flash photolysis of ester 1 demonstrates that 1 undergoes intramolecular H-atom abstraction to form the biradical 2 (λ(max)∼ 310 nm, τ = 200 ns, benzene), which intersystem crosses to photoenols, Z-3 (λ(max)∼ 380 nm, τ = 30-60 μs, benzene) and E-3 (λ(max)∼ 380 nm, τ = 11 ms, benzene). Density functional theory calculations were performed to support the proposed mechanism for forming cyclobutanol 4 and to explain how steric demand facilitates photoenol E-3 to form cyclobutanol 4 rather than lactone 5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.