Abstract

The mechanical properties and deformation mechanisms of CoCrNi medium-entropy alloy are studied through molecular dynamics simulations. The effects of temperature and average grain size on the elastic modulus, Poisson's ratio, yield stress, and maximum flow stress are investigated. The constant pressure molecular dynamics method is used to calculate the elastic modulus and Poisson's ratio of the alloy at different temperatures and average grain sizes. Simple tension simulations are conducted to determine the yield stress and maximum flow stress as a function of average grain size. The study also analyzes the dislocation behavior near grain boundaries at different temperatures using molecular dynamics simulations. The Hall-Petch and inverse Hall-Petch relationships are employed to describe the grain size-dependent deformation behavior of the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.