Abstract
We investigate the formation of molecules during the chemical evolution of a cold dense interstellar cloud using a gas-grain numerical code in order to study the effects of grain-size distribution and grain growth on molecular abundances. Three initial size distributions have been used, based on earlier models. To incorporate different granular sizes, we divided the distribution of sizes utilized into five logarithmically equally spaced ranges, integrated over each range to find its total granular number density, and assigned that number density to an average size in that range. We utilized rate coefficients for surface reactions, accretion, and desorption as functions of grain size. We then followed the chemical evolution of the surface populations of the five average-sized grains along with the gas-phase chemistry. We find that the total effective granular surface area of a distribution is an important parameter in the determination of surface abundances, with and without grain growth. The effect on gas-phase abundances can also be sizable. Grain growth with time increases the rate of depletion of molecules, such as CO, produced in the gas phase. Use of a size distribution for grains in gas-grain models does not improve the agreement of calculated and observed abundances, in the gas or on grains, as compared with models containing grains of a fixed radius of 0.1 μm. This result helps to verify the quality of the classical grain approximation for cold cloud models. Further, it provides an important basis for future gas-grain models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.