Abstract

Calorie restriction (CR) has a positive impact on health and life span. Previous work, however, does not reveal the whole underlying mechanism of behavioral phenotypes under CR. We propose a new approach based on phase space reconstruction (PSR) to analyze the behavioral responses of mice to graded CR. This involved reconstructing high-dimensional attractors which topologically represent the intrinsic dynamics of mice based on low-dimensional time series of movement counts observed during the 90-day time course of restriction. PSR together with correlation dimensions (CD), Kolmogorov entropy (KE), and multifractal spectra builds a map from internal attractors to the phenotype of mice and reveals the mice with increasing CR levels undergo significant changes from a normal to a new state. Features of the attractors (CD and KE) were significantly associated with gene expression profiles in the hypothalamus of the same individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call