Abstract
Plasmonic gold nanostructures offer a promising route to improving the solar energy conversion efficiency of semiconductors. This paper reports that the presence of gold nanoparticles (NPs) on the surface of TiO2 nanorods leads to an enhanced photocurrent for the photoelectrochemical (PEC) water splitting performance and discusses the origins of this enhancement from the results of various characterization techniques. The results show that plasmon-induced resonant energy transfer is responsible for the light harvesting enhancement at the energies below the band edge of TiO2. These results may provide a general approach to overcoming the low optical absorption of semiconductor structures, while further reducing the charge recombination losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.