Abstract

The effects of human red cell glycophorin A (GPA) on the translocation to the plasma membrane and anion transport activity of the human erythrocyte anion transporter (band 3; AE1) have been examined using the Xenopus oocyte expression system. We show that band 3 accumulates steadily at the oocyte surface with time in the presence or absence of GPA, but this occurs more quickly when GPA is coexpressed. The amount of band 3 at the surface is determined by the concentrations of band 3 and GPA cRNA that are injected, with a higher proportion of total band 3 being translocated to the surface in the presence of GPA cRNA. The increased expression of DNDS-sensitive chloride transport is highly specific to GPA, and is not observed when the cRNA to the putative glycophorin E or a very high concentration of the cRNA to glycophorin C are coexpressed with band 3 in oocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.