Abstract
Directed self-assembly of block copolymers over chemically patterned substrates has proven to be an effective method for sublithographic patterning. Features on these chemical patterns can be multiplied by the natural domain-spacing of the block copolymer assembled on top of the substrate through pattern interpolation. The LiuNealey (LiNe) chemoepitaxy flow for directed self-assembly allows for modification of the geometry and chemistry of the nanopatterned substrate. The critical dimensions and period along with the chemical composition of the patterned features in the LiNe flow govern the equilibrium morphology of the assembled block copolymer. We demonstrate how the construction of the chemical pattern affects the selection for desired, well-registered assembly of block copolymer melts by using a theoretically informed coarse-grained many-body model of block copolymers. The molecular simulations are used to provide an explanation for how to best design the chemical pattern in the LiNe flow for the directed self-assembly (DSA) of block copolymers to achieve desired line-andspace structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.