Abstract

AbstractWe use Van Allen Probes data to investigate the responses of tens of keV to 2 MeV electrons throughout a broad range of the radiation belts (2.5 ≤ L ≤ 6.0) during 52 geomagnetic storms from the most recent solar maximum. Electron storm time responses are highly dependent on both electron energy and L shell. Tens of keV electrons typically have peak fluxes in the inner belt or near‐Earth plasma sheet and fill the inner magnetosphere during storm main phases. Approximately 100 to ~600 keV electrons are enhanced in up to 87% of cases around L~3.7, and their peak flux location moves to lower L shells during storm recovery phases. Relativistic electrons (≥~1 MeV) are nearly equally likely to produce enhancement, depletion, and no‐change events in the outer belt. We also show that the L shell of peak flux correlates to storm magnitude only for hundreds of keV electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.