Abstract
Experimental evolution is characterized by exponential or logistic growth and periodic population bottlenecks. The fate of a rare beneficial mutation in these systems is influenced both by the bottleneck effect and by genetic drift. This paper explores the effects of incorporating genetic drift into models of fixation probability in populations with periodic bottlenecks. To model the inherent stochasticity during the growth phase in these populations, we assume a Poisson distribution of offspring. An analytical solution is developed to calculate the fixation probability and a computer simulation is used to verify the results. We find that the fixation rate of a favourable mutant is significantly lower when genetic drift is considered; fixation probability is reduced by over 25% for realistic experimental protocols. Our method is valid for both weak and strong selection; since very large selection coefficients have been reported in the experimental literature, this is an important improvement over previous results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.