Abstract

Cytokine gene therapy is one of the cancer treatment strategies. Recently, granulocyte-monocyte colony-stimulating factor (GM-CSF), as an important cytokine in activating dendritic cells and boosting the anti-tumor immune responses, has been utilized as an immunotherapeutic agent in cancer gene therapy. The purpose of the present investigation was to study the GM-CSF gene therapy effects in regression of tumor masses in fibrosarcoma mouse model. To investigate the therapeutic efficacy of GM-CSF, WEHI-164 tumor cells were transfected with murine GM-CSF plasmid. For cytokine production by transfected cells, enzyme-linked immunosorbent assay test was used. Fibrosarcoma mouse model established with transfected cells which were injected subcutaneously into Balb/c mice. Tumor sizes were measured by caliper. Mice were sacrificed and the tumors were extracted. The expression of GM-CSF was studied by real-time polymerase chain reaction (PCR) and immunoblotting. The expression of Ki-67 (a tumor proliferative marker) in tumor masses was studied by immunohistochemical staining. The group treated with GM-CSF indicated a decrease in tumor mass volume (P = 0.001). The results of western blotting and real-time PCR showed that GM-CSF expression increased in the group treated with GM-CSF (with a relative expression of 1.36). Immunohistochemical staining showed that Ki-67 expression has reduced in the group treated with GM-CSF. Monotherapy with GM-CSF has therapeutic effects on the regression of tumor masses in the fibrosarcoma mouse model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call