Abstract
Fatigue behavior has been studied on gas-nitrided smooth specimens of commercial pure titanium, an alpha/beta Ti-6Al-4V alloy, and a beta Ti-15Mo-5Zr-3Al alloy under rotating bending, and the obtained results were compared with the fatigue behavior of annealed or untreated specimens. It was found that the role of the nitrided layer on fatigue behavior depended on the strength of the materials. Fatigue strength was increased by nitriding in pure titanium, while it was decreased in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys. Based on detailed observations of fatigue crack initiation, growth, and fracture surfaces, the improvement and the reduction in fatigue strength by nitriding in pure titanium and both alloys were primarily attributed to enhanced crack initiation resistance and to premature crack initiation of the nitrided layer, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.