Abstract

Flaring of associated gas from oil exploitation has several consequences on the environment. This study explores the spatial variability effects of gas flaring on the growth and development of cassava (Manihot esculenta), waterleaf (Talinum triangulare), and pepper (Piper spp.) crops commonly cultivated in the Niger Delta, Nigeria. Data was collected on soil and atmospheric temperature and moisture at a 20-m interval, starting at 40 m from the flare point to a distance of 140 m. Lengths and widths of crop leaves, height of crop plants and cassava yields were measured at the specified distances. The amino acid, ascorbic acid, starch, and sugar constituents of the cassava yields were determined. The results suggest that a spatial gradient exists in the effects of gas flares on crop development. Retardation in crop development manifests in decreased dimensions of leaf lengths and widths of cassava and pepper crops closer to the gas flare point. Statistical analysis also confirms that cassava yields are higher at locations further away from the flare point. In addition, the amount of starch and ascorbic acid in cassava decreased when the plant is grown closer to the gas flare. High temperatures around the gas flare appear to be the most likely cause of this retardation. The waterleaf crop, on the other hand, appears to thrive better around the gas flare point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.