Abstract
IntroductionThe neuropathology of Parkinson's disease (PD) is complex and affects multiple systems of the body beyond the central nervous system. This study examined the effects of gallic acid (GA) and gastrointestinal vagotomy (VG) on motor, cognitive, intestinal transit time, and thalamic nuclei electrical power in an animal model of PD induced by rotenone. Materials and methodsMale Wistar rats were divided into 4 groups: Sham, ROT, ROT+GA, VG + ROT. Sham rats received vehicle, those in ROT received rotenone (5 mg/kg/2 ml, ig), PD rats in ROT+GA were treated with GA (100 mg/kg, gavage/once daily, for 28 days), and in VG + ROT, the vagal nerve was dissected. Stride length, motor coordination and locomotion, intestinal transit time, cognitive and pain threshold, and thalamic local EEG were evaluated. Oxidative stress indexes in striatal tissue were also measured. ResultsRotenone diminished significantly the stride length (p < 0.001), motor coordination (p < 0.001), power of thalamic EEG (p < 0.01) and pain (p < 0.001). MDA increased significantly (p < 0.001) while GPx activity decreased (p < 0.001). Intestinal transit time rose significantly (p < 0.01). PD rats treated with GA improved all above disorders (p < 0.001, p < 0.01). Vagotomy prevented significant alterations of motor and non-motor parameters by rotenone. ConclusionAccording to current findings, rotenone acts as a toxin in GI and plays a role in the pathogenesis of PD through gastric vagal nerve. Thus, vagotomy could prevent the severity of toxicity by rotenone. In addition, GA improved symptoms of PD induced by rotenone. Therefore, GA can be regarded as a promising therapeutic candidate for PD patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.