Abstract
Abstract As a crucial core physics parameter, the control rod reactivity has to be predicted for the control and safety of the reactor. This paper studies the control rod reactivity calculation of the pebble-bed reactor with three scenarios of UO2, (Th,U)O2, and PuO2 fuel type without any modifications in the configuration of the reactor core. The reactor geometry of HTR-10 was selected for the reactor model. The entire calculation of control rod reactivity was done using the MCNP6 code with ENDF/B-VII library. The calculation results show that the total reactivity worth of control rods in UO2-, (U,Th)O2-, and PuO2-fueled cores is 15.87, 15.25, and 14.33%Δk/k, respectively. These results prove that the effectiveness of total control rod in thorium and uranium cores is almost similar to but higher than that in plutonium cores. The highest reactivity worth of individual control rod in uranium, thorium and plutonium cores is 1.64, 1.44, and 1.53%Δk/k corresponding to CR8, CR1, and CR5, respectively. The other results demonstrate that the reactor can be safely shutdown with the control rods combination of CR3+CR5+CR8+CR10, CR2+CR3+CR7+CR8, and CR1+CR3+CR6+CR8 in UO2-, (U,Th)O2-, and PuO2-fueled cores, respectively. It can be concluded that, even though the calculation results are not so much different, however, the selection of control rods should be considered in the pebble-bed core design with different scenarios of fuel type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.