Abstract

The objective of this study was to evaluate processing methods for frozen beef subprimals; the effects of freezing and thawing rates on tenderness, sensory properties, and retail display were evaluated. There were 6 treatments: fresh, never frozen 14 d wet aged (14D); fresh, never frozen 21 d wet aged (21D); blast frozen-fast thawed (BF); blast frozen-slow thawed (BS); conventionally frozen-fast thawed (CF); and conventionally frozen-slow thawed (CS). All frozen beef subprimals were aged for 14 d before freezing. Three beef subprimal cuts, rib eye roll (n=90), strip loin (n=90), and top sirloin butt (n=90), were used with 3 replications of 5 samples per treatment per week (total of 9 wk, n=270). Blast freezing occurred by placing spacers between the boxes of meat on pallets at -28°C with high air velocity for 3 to 5 d. Conventional freezing occurred with boxes of meat stacked on pallets and placed in a -28°C freezer with minimal air movement for at least 10 d. Fast thawing of subprimals (to an internal temperature of -1°C to 1°C) occurred by immersion in a circulating water bath (<12°C) for 21 h, and slow thawing of subprimals occurred over a 2-wk period by placing individual subprimals on tables at 0°C. Steaks (2.5 cm thick) were cut from the longissimus thoracis (LT), longissimus lumborum (LL), and gluteus medius (GM) for Warner-Bratzler shear force (WBS), trained sensory evaluation, and retail display. For LL and GM beef steaks, frozen treatments were equal or lower in WBS values to 14D and 21D beef steaks. No differences were detected in WBS among the treatments applied to GM beef steaks (P=0.08). There were no differences in sensory tenderness among the LL, LT, and GM (P>0.05). All LL and LT beef steaks had approximately 4 d to 40% discoloration, and all GM steaks had over 3 d to 40% discoloration. Steaks from the LL and LT began to discolor at about 3 d, and the GM began to discolor after 1 d. For all beef subprimals, purge loss during storage and thawing was significantly greater for the slow-thawed subprimals (P<0.01), and all fast-thawed subprimals were equal or superior to 14D and 21D (P<0.01) in storage and thawing purge. During retail display, the greatest purge loss occurred in fast-thawed treatments (P<0.01). Overall, freezing rate did not affect purge loss, and neither freezing nor thawing rates had significant meaningful effects on WBS, and sensory properties were comparable with fresh, never-frozen subprimals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.