Abstract

This study attempted to replace the wet grinding process of rice with a freeze grinding process. The freeze grinding process involved soaking the rice samples in liquid nitrogen before grinding in a dry grinding machine. Three different types of grinders (hammer mill, roller mill, and pin mill) were used in both the freeze and the dry grinding processes. Wet grinding resulted in significantly ( P < 0.05) smaller average particle size and a lower percentage of damaged starch than the alternative methods of grinding. Freeze grinding, especially using the hammer mill significantly reduced both the average particle size and the damaged starch content. Moreover, freeze grinding produced a higher yield after sieving in comparison with dry grinding using an identical grinder. In particular, freeze grinding with the hammer mill gave a significantly higher yield after sieving than dry grinding with the hammer mill. The wet grinding process had the significantly highest specific energy consumption (13,868 kJ/kg) due to the large consumption of electrical energy by the many machines in the process. The energy consumption of freeze grinding was similar to dry grinding. Consequently, the freeze grinding process was a viable alternative to the traditional wet grinding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call