Abstract

AbstractOngoing global warming may result in colder soil and thawing cycles and will increase the frequency of soil freezing‐and‐thawing‐treated cycles (FTCs) during winter in the cool‐temperate and high‐latitude regions. The purpose of this study was to determine the effects of repeated freeze–thaw cycles on the solubility and adsorption of P in lab and field experiments on Pellustert, Argiustoll, Haplustept, Fluvaquent, and Calciorthid soils, the major soil groups in E Turkey. The results demonstrated that, depending on the soil type, the freeze–thaw cycle could increase the adsorption and desorption of P within a certain temperature range. Repeated freezing and thawing decreased equilibrium P concentration (EPC) and increased P adsorption. EPC and P adsorption were strongly correlated with the number of FTCs. The highest P adsorption and the lowest P desorption was found in Pellustert followed by Argiustoll, Calciorthid, Haplustept, Fluvaquent when refrozen at –10°C for 15 d, then thawed at +2.5°C for 18 h, and 9 times FTC. However, in the field study, the adsorption value was lower than the value obtained from the laboratory condition. It appears that increasing the frequency of freeze–thaw processes depending on increase in temperature that leads to decreased plant‐available soil P pools, thus requires more P fertilizer in soil solution to supply adequate P during the plant‐growth period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.