Abstract
The effects of freestream turbulence intensity and integral length scale as freestream turbulent parameters on the drag coefficient of a sphere were experimentally investigated in a closed circuit wind tunnel. The Reynolds number, Re = Ud/ ν, was varied from 2.2 × 10 4 to 8 × 10 4 by using spheres with diameter d of 20, 51 and 102 mm in addition to altering the freestream velocity, U. The freestream turbulence intensity Tu and flow integral length scale Λ were manipulated by the utilization of orifice perforated plates. The proper combination of orifice perforated plate hole diameter, sphere size, and sphere location along the center line of the wind tunnel enabled the independent alterations of turbulence intensity and relative integral length scale ( Λ/ d) from 1.8% to 10.7% and from 0.1 to 2.6, respectively, at each studied Reynolds number. Results show that over the range of conditions studied, the drag always decreases with increasing Tu and, the critical Reynolds number at which the drag coefficient is dramatically reduced is decreased by increasing Tu. Most interestingly, the drag at any particular Re and Tu may be significantly lowered by reducing Λ/ d; this is particularly the case at high Re and Tu.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.