Abstract

BackgroundHigh-intensity interval training has been shown to be a time-efficient way to induce physiological adaptations similar to those of traditional endurance training. Creatine supplementation may enhance high-intensity interval training, leading to even greater physiological adaptations. The purpose of this study was to determine the effects of high-intensity interval training (HIIT) and creatine supplementation on cardiorespiratory fitness and endurance performance (maximal oxygen consumption (VO2PEAK), time-to-exhaustion (VO2PEAKTTE), ventilatory threshold (VT), and total work done (TWD)) in college-aged men.MethodsForty-three recreationally active men completed a graded exercise test to determine VO2PEAK, VO2PEAKTTE, and VT. In addition, participants completed a time to exhaustion (TTE) ride at 110% of the maximum workload reached during the graded exercise test to determine TWD (TTE (sec) × W = J). Following testing, participants were randomly assigned to one of three groups: creatine (creatine citrate) (Cr; n = 16), placebo (PL; n = 17), or control (n = 10) groups. The Cr and PL groups completed four weeks of HIIT prior to post-testing.ResultsSignificant improvements in VO2PEAK and VO2PEAKTTE occurred in both training groups. Only the Cr group significantly improved VT (16% vs. 10% improvement in PL). No changes occurred in TWD in any group.ConclusionIn conclusion, HIIT is an effective and time-efficient way to improve maximal endurance performance. The addition of Cr improved VT, but did not increase TWD. Therefore, 10 g of Cr per day for five days per week for four weeks does not seem to further augment maximal oxygen consumption, greater than HIIT alone; however, Cr supplementation may improve submaximal exercise performance.

Highlights

  • High-intensity interval training has been shown to be a time-efficient way to induce physiological adaptations similar to those of traditional endurance training

  • Helgerud et al [11] found that High-intensity interval training (HIIT) significantly augmented maximal oxygen consumption (VO2PEAK) and time to exhaustion (TTE) greater than a traditional training program with moderately-trained males

  • Body Weight (BW) There was no change in BW from baseline to post measurement in the Cr (84.0 ± 12.5 kg and 84.4 ± 12.3 kg, respectively) or Pl (82.9 ± 15.2 kg and 83.2 ± 15.0 kg, respectively) groups

Read more

Summary

Introduction

High-intensity interval training has been shown to be a time-efficient way to induce physiological adaptations similar to those of traditional endurance training. Creatine supplementation may enhance high-intensity interval training, leading to even greater physiological adaptations. The purpose of this study was to determine the effects of high-intensity interval training (HIIT) and creatine supplementation on cardiorespiratory fitness and endurance performance (maximal oxygen consumption (VO2PEAK), time-to-exhaustion (VO2PEAKTTE), ventilatory threshold (VT), and total work done (TWD)) in college-aged men. High-intensity interval training (HIIT) is a time-efficient way to induce similar adaptations, such as increased maximal mitochondrial enzyme activity [4] and a reduction in glycogen utilization and lactate accumulation [5,6]. Helgerud et al [11] found that HIIT significantly augmented maximal oxygen consumption (VO2PEAK) and time to exhaustion (TTE) greater than a traditional training program with moderately-trained males. An increase in VO2PEAK and VT was found in three groups of well-trained cyclists following three different HIIT protocols of varying intensities and work-to-rest ratios [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call