Abstract

The forearms significantly contribute to the upper extremity movements and, consequently, whole-body responses during locomotion. The purpose of this study is to provide a more in-depth understanding of the mechanism controlling forearm movements during walking by comprehensively investigating the effects of the forearms on the lower and upper limb movements. Such an understanding can provide critical information for the design and control of robotic upper-limb prostheses. Twelve healthy young participants were recruited to compare their gait during (1) natural walking, (2) walking while wearing a pair of artificial passive forearms and having their actual forearms restrained by orthopedic braces, and (3) walking with only having their forearms restrained by the braces (i.e., no artificial forearms). While the passive forearms in condition 2 were to determine if the forearm movements were passively or actively controlled, condition 3 was to account for the effects of restraining the forearms in condition 2. The participants' lower-limb joint angles and spatiotemporal parameters remained unchanged across the three conditions while walking at their normal and fast self-selected gait speeds. However, significant decreases were observed in the shoulder and trunk angles, the interlimb coordination, and the shoulder-trunk correlations when walking with the artificial forearms. These observations were in tandem with the increased muscle activity of the biceps, trapeziuses, and posterior deltoids, which controlled the shoulder motion and trunk rotation during walking with the artificial forearms across both normal and fast self-selected speeds. Although not significant, the metabolic energy analysis of five participants revealed an increase during walking with artificial forearms. The results support the idea that the body actively controls the forearm movements through the shoulder and trunk rotations to mitigate the undesired disturbances induced by the passive forearm movements during locomotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.