Abstract

AbstractAvian skull shape diversity is classically thought to result from selection for structures that are well adapted for distinct ecological functions, but recent work has suggested that allometry is the dominant contributor to avian morphological diversity. If true, this hypothesis would overturn much conventional wisdom regarding the importance of form-function relationships in adaptive radiations, but it is possible that these results are biased by the low taxonomic levels of the clades that have been studied. Using 3D morphometric data from the skulls of a relatively old and ecologically diverse order of birds, the Charadriiformes (shorebirds and relatives), we found that foraging ecology explains more than two-thirds of the variation in skull shape across the clade. However, we also found support for the hypothesis that skull allometry evolves, contributing more to shape variation at the level of the family than the order. Allometry may provide an important source of shape variation on which selection can act over short timescales, but its potential to evolve complicates generalizations between clades. Foraging ecology remains a better predictor of avian skull shape over macroevolutionary timescales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.