Abstract

Climate change is warming the oceans, increasing carbon dioxide partial pressure and reducing nutrient recycling from deep layers. This will affect carbon (C) and phosphorus (P) availability in the oceans, thus, altering the balance between the nutrient content of consumers and their food resource. The combined effects of food quality and temperature have been investigated for adult copepods; however, nauplii, the early developmental stages of copepods, often far outnumber adults, grow more rapidly and have a higher phosphorus body content and demand than later life stages. Consequently, ontogeny may affect how copepods respond to the combined stressors of increasing temperature and altered food stoichiometry. We conducted temperature-controlled experiments (24, 28 and 32 °C) where Parvocalanus crassirostris was fed either a P-replete or a P-limited phytoplankton food source. Reduced survival of nauplii and copepodites at the highest temperature was ameliorated when fed P-replete food. At higher temperatures, copepodite growth remained stable, but internal C:P stoichiometry diverged in the direction of phytoplankton C:P, suggesting that increased temperature affected copepodite stoichiometric homeostasis. In contrast, naupliar P content increased with temperature and naupliar growth was P limited, suggesting nauplii required additional phosphorus at higher temperatures. We conclude that resource stoichiometry plays a key role in how copepod survival and growth are impacted by temperature, and that ontogeny mediates these responses. Our results suggest that as the extent of warming oceans and phytoplankton nutrient limitation increase, copepod survival and the growth of early life stages may decline.

Highlights

  • Climate change will challenge organisms to adapt to new environmental conditions

  • Our study addresses the interactive effects of food quality and temperature on the survival, growth, stoichiometry and grazing rate of both naupliar and copepodite stages of the widespread subtropical calanoid copepod species, Parvocalanus crassirostris

  • Stoichiometry of the T. lutea fed to the zooplankton cultures over time is presented in Online Resource Fig. S2

Read more

Summary

Introduction

Climate change will challenge organisms to adapt to new environmental conditions. Warming of the earth’s atmosphere and increased carbon dioxide availability are two trends we see today that may change the chemical composition and growth rates of autotrophs (Urabe et al 2003; Riebesell et al 2007; Toseland et al 2013). Phytoplankton chemical composition tends to be more flexible than their consumers’ body stoichiometry and more closely reflects the availability of carbon and nutrients (Urabe et al 2003; Klausmeier et al 2004; Meunier et al 2016). Climate change may challenge consumers to adapt to a future food resource that may not chemically reflect the food source they rely on today, or be outcompeted by species with optimized nutrient uptake affinities, storage and retention traits (Meunier et al 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call