Abstract

Focal damage to articular cartilage is commonly found in symptomatic knees and may contribute to patient discomfort and progressive cartilage degeneration. The objective of this study was to quantify changes in cartilage intra-tissue strain and sliding occurring near a focal defect. Pairs of human osteochondral blocks were compressed by 20% of the total cartilage thicknesses, and tissue deformation was recorded by video microscopy. Then, a single, full-thickness defect was created in one block from each pair, blocks were allowed to re-swell, and the pairs were retested. Stained nuclei, acting as fiducial markers, were tracked by digital image correlation and used to calculate cartilage strains and surface displacement. With intact samples, axial strain decreased with depth, as is typical of cartilage, and relatively little sliding occurred between surfaces. With defect samples, axial compression of cartilage at the defect rim rose by approximately 30%, shear in the opposing tissue increased 10-fold to approximately 0.15, and local sliding was elevated to > 50 microm. In vivo, tissue near a defect likely experiences increased overall compression, magnifying these observed in vitro effects. Excessive strains may contribute to cell death, matrix damage, or accelerated wear, and repair efficacy may depend on the ability to alleviate adverse mechanical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.