Abstract

This paper describes a study on the performance characteristics of sector-shaped, high-speed thrust bearings subjected to the effects of both turbulence and fluid inertia forces. The basic lubrication equations are derived by integrating the momentum and continuity equations in the polar coordinates including the full inertia terms throughout the film thickness; and a numerical calculation technique combining the control volume integration and the Newton-Raphson linearization method is applied to solve the equations. The static characteristics such as the load carrying capacity and the pressure center are calculated for various values of pad extent angle and inner-to-outer radius ratio of a pad. The theoretical results of the load carrying capacity are compared with the experimental results. It was found that the fluid inertia forces have significant effects on the static characteristics of the bearings. Good agreement was obtained between theoretical and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call