Abstract
The turbulent deflagration to detonation transition (DDT) process occurs when a subsonic flame interacts with intense turbulence resulting in spontaneous acceleration and the onset of DDT. The mechanisms that govern the spontaneous ignition are deduced intricately in numerical simulations. This work experimentally explores the conditions that are known precursors to detonation initiation. More specifically, the experiment presented investigates the role of flame-generated compression as a cycle that continuously amplifies until a hotspot forms on the flame front and ignites. The study quantifies the compression comparatively against other flame regimes through ultra-high speed pressure measurements while qualitatively detailing flame generated compression through density gradients via schlieren imaging. Additionally, flow field measurements are quantified throughout the flow using simultaneous particle image velocimetry (PIV) and OH* chemiluminescence. The turbulence fluctuations and flame speeds are extracted from these measurements to identify the reactant conditions where flame-generated compression begins. Collectively, these simultaneous high-speed measurements provide detailed insight into the flame and flow field characteristics where the runaway process occurs. This work ultimately documents direct flow field measurements to extract the contribution of flame-generated turbulence on the turbulent deflagration to detonation transition process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.