Abstract

Summary The effects of filter-cake buildup and/or filter-cake-property variation with time on wellbore stability have been plaguing the industry. The increasing use of lost-circulation materials (LCMs) in recent years for wellbore strengthening in weak and/or depleted formations necessitates models that can predict these effects. However, the complexities of effective-stress and pore-pressure evolution around the borehole while drilling, coupled with the transient variation of mud-filtration properties, have delayed such modeling efforts. In this paper, the analytical solutions for the time-dependent effects of mudcake buildup and mudcake properties on the wellbore stresses and formation pore pressure, and thus the safe-drilling-mud-weight window, are derived. The transient effects of mudcake buildup and mudcake buildup coupled with its permeability reduction during filtration on the safe-drilling-mudweight window are illustrated through numerical examples. The results showed that the safe-mudweight windows were greatly affected by the buildup of filter cake and its permeability variation. For example, the analysis for filter-cake buildup with cake permeability of 10–2 md showed that the safe-mudweight window was widened by 0.5 g/cc after 2.5 hours post-excavation when compared to the case of a wellbore without mudcake. On the other hand, a lower mudcake permeability of 10–3 md widened the mudweight window by as much as 1 g/cc. Last but not least, the analyses revealed that even for mudcake permeability as low as 10–3 md, neglecting the permeable nature of the mudcake can result in overestimation of the safe-drilling-mudweight window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.