Abstract
Remotely sensed data from airborne laser scanning (ALS) and interferometric synthetic aperture radar (InSAR) can greatly improve the precision of estimates of forest resource parameters such as mean biomass and biomass change per unit area. Field plots are typically used to construct models that relate the variable of interest to explanatory variables derived from the remotely sensed data. The models may then be used in combination with the field plots to provide estimates for a geographical area of interest with corresponding estimates of precision using model-assisted estimators. Previous studies have shown that field plot sizes found suitable for pure field surveys may be sub-optimal for use in combination with remotely sensed data. Plot boundary effects, co-registration problems, and misalignment problems favor larger plots because the relative impact of these effects on the models of relationships may decline by increasing plot size. In a case study in a small boreal forest area in southeastern Norway (852.6ha) a probability sample of 145 field plots was measured twice over an 11year period (1998/1999 and 2010). For each plot, field measurements were recorded for two plot sizes (200m2 and 300/400m2). Corresponding multitemporal ALS (1999 and 2010) and InSAR data (2000 and 2011) were also available. Biomass for each of the two measurement dates as well as biomass change were modeled for all plot sizes separately using explanatory variables from the ALS and InSAR data, respectively. Biomass change was estimated using model-assisted estimators. Separate estimates were obtained for different methods for estimation of change, like the indirect method (difference between predictions of biomass for each of the two measurement dates) and the direct method (direct prediction of change). Relative efficiency (RE) was calculated by dividing the variance obtained for a pure field-based change estimate by the variance of a corresponding estimate using the model-assisted approach. For ALS, the RE values ranged between 7.5 and 15.0, indicating that approximately 7.5–15.0 as many field plots would be required for a pure field-based estimate to provide the same precision as an ALS-assisted estimate. For InSAR, RE ranged between 1.8 and 2.5. The direct estimation method showed greater REs than the indirect method for both remote sensing technologies. There was clearly a trend of improved RE of the model-assisted estimates by increasing plot size. For ALS and the direct estimation method RE increased from 9.8 for 200m2 plots to 15.0 for 400m2 plots. Similar trends of increasing RE with plot size were observed for InSAR. ALS showed on average 3.2–6.0 times greater RE values than InSAR. Because remote sensing can contribute to improved precision of estimates, sample plot size is a prominent design issue in future sample surveys which should be considered with due attention to the great benefits that can be achieved when using remote sensing if the plot size reflects the specific challenges arising from use of remote sensing in the estimation. That is especially the case in the tropics where field resources may be scarce and inaccessibility and poor infrastructure hamper field work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.