Abstract

Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.