Abstract
The effects of feeding condition and dietary lipid level on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of red sea bream Pagrus major were investigated by competitive polymerase chain reaction. Not only visceral adipose tissue but also liver of red sea bream showed substantial LPL gene expression. In the liver, starvation (at 48 h post-feeding) drastically stimulated LPL gene expression in the fish-fed low lipid diet, but had no effect in the fish fed high lipid diet. Dietary lipid level did not significantly affect the liver LPL mRNA level under fed condition (at 5 h post-feeding). In the visceral adipose tissue, LPL mRNA number per tissue weight was significantly higher in the fed condition than in the starved condition, irrespective of the dietary lipid levels. Dietary lipid levels did not affect the visceral adipose tissue LPL mRNA levels under fed or starved conditions. Our results demonstrate that both feeding conditions and dietary lipid levels alter the liver LPL mRNA levels, while only the feeding conditions but not dietary lipid levels cause changes in the visceral adipose LPL mRNA level. It was concluded that the liver and visceral adipose LPL gene expression of red sea bream seems to be regulated in a tissue-specific fashion by the nutritional state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.