Abstract
The objective of the current study was to determine the effects of adding 3-nitrooxypropanol to the diet of lactating Holstein cows on methane emissions, rumen fermentation, ruminal microbial profile, and milk production. Twelve ruminally cannulated Holstein cows in midlactation were used in a crossover design study with 28-d periods. Cows were fed a diet containing 38% forage on a dry matter basis with either 2,500mg/d of 3-nitrooxypropanol (fed as 25g of 10% 3-nitrooxypropanol on silicon dioxide) or 25g/d of silicon dioxide (control). After a 21-d diet adaptation period, dry matter intake (DMI) and milk yield were recorded daily. Rumen fluid and digesta were collected on d 22 and 28 for volatile fatty acid analysis and microbial profiling. Enteric methane emissions were measured on d 23 to 27 using the sulfur hexafluoride tracer gas technique. Feeding 3-nitrooxypropanol did not affect DMI; however, methane production was reduced from 17.8 to 7.18g/kg of DMI. No change in milk or milk component yields was observed, but cows fed 3-nitrooxypropanol gained more body weight than control cows (1.06 vs. 0.39kg/d). Concentrations of total volatile fatty acids in ruminal fluid were not affected by treatment, but a reduction in acetate proportion and a tendency for an increase in propionate proportion was noted. As such, a reduction in the acetate-to-propionate ratio was observed (2.02 vs. 2.36). Protozoa counts were not affected by treatment; however, a reduction in methanogen copy count number was observed when 3-nitrooxypropanol was fed (0.95 vs. 2.69 × 108/g of rumen digesta). The data showed that feeding 3-nitrooxypropanol to lactating dairy cows at 2,500mg/d can reduce methane emissions without compromising DMI or milk production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Dairy Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.