Abstract

Poly(ethylene terephthalate) (PET) control fibers (nominal diameter ∼24 ± 3 μm) and PET fibers with embedded vapor-grown carbon nanofibers (PET-VGCNF) (nominal diameter ∼25 ± 2 μm) were exposed to cyclic loading and monotonic tensile tests. The control fibers were processed through a typical melt-blending technique and the PET-VGCNF samples were processed with approximately 5 wt.% carbon nanofibers present in the sample. Under uniaxial fatigue conditions, the fibers were subjected to a maximum stress that was approximately 60% of the fracture stress of the sample at an elongation rate of 10 mm/min in uniaxial tension. The fibers were subjected to a frequency of 5 Hz. Subsequent to non-fracture fatigue conditions, the fibers were tested under uniaxial stress conditions for observation of the change in mechanical properties to assess the effects of fatigue loading. The elastic modulus, hardening modulus, fracture strength, work done, and yield strain of both PET control and PET-VGCNF samples in uniaxial tension subsequent to fatigue were shown to be dependent on the residual fatigue strains. Relative mechanical properties were used to quantify the difference in PET and PET-VGCNF samples as a function of residual strain. In most cases, the results indicated a strengthening mechanism (strain hardening effect) in the low residual strain limit for fatigued PET samples and not for fatigued PET-VGCNF samples. In comparison with the unreinforced PET sample, the PET-VGCNF fibers showed greater degradation of mechanical properties as a function of residual strain due to fatigue when cycled at 60% of the fracture stress. The effects of the fatigue process on the change in mechanical properties have been quantified and supported through existing qualitative, quantitative, and scanning electron microscopy (SEM) techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.