Abstract
IntroductionTo determine 3D growth of amnion membrane cells using soft substrate plates of various rigidities. MethodsAmnion epithelial (AEC) and mesenchymal cells (AMC) were cultured on 6-well soft substrate plates coated with matrigel and elastomer with rigidities of 0.5, 2, 8, 16, and 64 kPa (n = 3 each). Controls were cells in standard culture conditions. Cell morphology, spheroids' and sheets’ formations and viability (bright field microscopy and crystal violet staining), and cellular transitions (vimentin/cytokeratin-18 [CK-18] ratios) were analyzed. A Student t-test was used for statistical analyses. ResultsAECs in substrate rigidities between 2 and 8 kPa formed 3D features (spheroids and sheets) while retaining viability. Two kPa produced spheroids with epithelial characteristics (decrease in vimentin), and 8 kPa favored sheets. Transplantation and culture of AEC sheets with no matrix or elastomers, retained AECs’ viability and maintained their epithelial characteristics. Optimum AMC growth was also between 2 and 8 kP A, with predominance of vimentin; however, AMCs did not form 3D structures. Lower and higher rigidities transitioned AMCs into AECs (decrease in vimentin). DiscussionMatrix rigidities between 2 and 8 kPa produced 3D structures of AECs (spheroids and sheets), resembling amnion membranes’ morphology and exhibiting regenerative capacity in utero. Although AMCs grew in similar rigidities, a lack of 3D structures support their dispersed character in the membrane matrix. Extreme rigidities transitioned AMCs into AECs, suggesting that AMCs are transient cells (reservoirs) in the matrix required for remodeling. Compromises in matrix rigidity can cause membrane dysfunction and lead to adverse pregnancy outcomes.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.