Abstract

The aim of this study was to assess the influence of a single session of maximal exercise performed in water (4°C or 25°C) on blood rheological properties and the composition of fatty acids in the erythrocyte membranes of laboratory rats. This study will permit better understanding of the reactions occurring in the organism during rapid cooling in cold water, especially in regards to the hemorheological and biochemical parameters of blood. When compared to the control group, exercise performed in water at 4°C led to an increase in the elongation index (EI, from 0.30 Pa to 4.24 Pa) with no concurrent changes in erythrocyte aggregation, blood plasma viscosity, and fatty acid composition (saturated, unsaturated, saturated/unsaturated, monounsaturated, polyunsaturated polyunsaturated-n3, polyunsaturated-n6 fatty acids) of the erythrocyte membrane. In rats swimming in water at 25°C, we observed an increase in EI at shear stress from 0.30 Pa to 2.19 Pa, along with a decrease in the half-time of total aggregation when compared to the control group. These changes in erythrocyte rheological properties can be treated as a protective reaction to thermal stress resulting in their improved deformability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call