Abstract
The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, substituted aromatics, and PAH were quantified by direct gas chromatography/mass spectrometry (GC/MS). Soot particle diameters, number densities, and volume fractions was determined using static (classical) light scattering. The dependencies of flame species mole fraction profiles on equivalence ratio, using the expression, X i max = A i φ n i were also determined. The parameter n i , an indication of sensitivity to equivalence ratio, for stable aromatic precursors exhibits the following rank order: c-C 5H 6 (4.21) > C 3H 4 (3.09) > b-C 4H 6 (2.43) > C 4H 4 (2.20) > C 4H 2 (2.16) > C 2H 2 (1.66). For aromatic species, the values of n i were in the following order: phenylacetylene (9.33) > benzene (8.17) > indene (7.97) > toluene (6.39). In comparison, PAH species were extremely sensitive to flame equivalence ratios, with the following n values: benzo[a]pyrene (30.37) > acenaphthylene (15.33) > cyclopenta (cd) pyrene (14.58) > fluoranthene (13.52) > pyrene (12.73) > anthracene (11.18) > phenanthrene (10.79) > naphthalene (8.99).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.