Abstract

Monascus pigments (MPs) have been used as natural food pigments for many years. There is a high demand for Monascus red pigments (MRPs) to enhance color and for antibacterial and cancer prevention therapies in food and medicine. Most MRPs are not water soluble, and the yield of water-soluble MRPs is naturally low. On the other hand, water-soluble MRP is more cost effective for application in industrial mass production. Therefore, it is important to improve the yield of water-soluble MRPs. Environmental factors have a significant influence on the synthesis of water-soluble MRPs, which is crucial for the development of industrial production of water-soluble MRPs. This review introduces the biosynthetic pathways of water-soluble MRPs and summarizes the effects of environmental factors on the yield of water-soluble MRPs. Acetyl coenzyme A (acetyl-CoA) is a precursor for MPs synthesis. Carbon and nitrogen sources and the carbon/nitrogen ratio can impact MP production by regulating the metabolic pathway of acetyl-CoA. Optimization of fermentation conditions to change the morphology of Monascus can stimulate the synthesis of MPs. The appropriate choice of nitrogen sources and pH values can promote the synthesis of MRPs from MPs. Additives such as metal ions and non-ionic surfactants can affect the fluidity of Monascus cell membrane and promote the transformation of MRPs into water-soluble MRPs. This review will lay the foundation for the industrial production of water-soluble MRPs. © 2024 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.