Abstract
AbstractThe adhesion of thin film polymers will be critical in the integration of low-κ materials into microelectronic processing. This study describes the adhesion of two promising low-κ polymers (polyimide and benzocyclobutene) to a silicon dioxide surface. Critical adhesion values were measured using interface fracture mechanics samples in a double cantilever beam geometry. The effect of subcritical (time-dependent) delamination was also evaluated for these systems. Subcritical debonding data are important in understanding the effect of environment and temperature on interface reliability. To that end, experiments were conducted over a range of humidities to elucidate the effect of moisture on interface delamination. The important effect of the acceleration of debond growth rates due to cyclic loading is also described. In addition, XPS studies are presented to characterize the debond path in these layered systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.