Abstract

Purpose: To investigate the effects of electromagnetic pulse (EMP) exposure on the bioactivity of insulin and a preliminary mechanism for these effects.Materials and methods: A tapered parallel plate Gigahertz Transverse Electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose the insulin solution to EMP. Concurrent sham-exposed insulin solutions were used as a control. The effect of EMP-exposed insulin on fasting blood glucose levels of type I diabetes model mice, the effect of EMP on binding affinity between insulin and its receptor and the effect of EMP on insulin's fluorescence intensity were detected, respectively.Results: (i) After EMP exposure, compared with sham-exposed insulin, the bioactivity of insulin in decreasing fasting blood glucose levels in type I diabetes model mice was reduced significantly (p = 0.023). (ii) Compared with sham-exposed insulin group, the percentage fluorescein isothiocyannate (FITC) labelling of HL-7702 cells was significantly reduced in the EMP-exposed insulin group (22.7–13.8%, respectively). (iii) Compared with sham-exposed insulin, the fluorescence intensity was significantly reduced in EMP-exposed insulin (p < 0.001).Conclusions: EMP exposure significantly decreased the bioactivity of insulin to reduce the blood glucose levels in type I diabetic mice. This could be due to a decreased binding affinity between insulin and its receptor. This mechanism could involve an alteration of insulin's' conformation caused by EMP exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call