Abstract

Purpose: To investigate the effects of electromagnetic pulse (EMP) exposure on the bioactivity of insulin and a preliminary mechanism for these effects.Materials and methods: A tapered parallel plate Gigahertz Transverse Electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose the insulin solution to EMP. Concurrent sham-exposed insulin solutions were used as a control. The effect of EMP-exposed insulin on fasting blood glucose levels of type I diabetes model mice, the effect of EMP on binding affinity between insulin and its receptor and the effect of EMP on insulin's fluorescence intensity were detected, respectively.Results: (i) After EMP exposure, compared with sham-exposed insulin, the bioactivity of insulin in decreasing fasting blood glucose levels in type I diabetes model mice was reduced significantly (p = 0.023). (ii) Compared with sham-exposed insulin group, the percentage fluorescein isothiocyannate (FITC) labelling of HL-7702 cells was significantly reduced in the EMP-exposed insulin group (22.7–13.8%, respectively). (iii) Compared with sham-exposed insulin, the fluorescence intensity was significantly reduced in EMP-exposed insulin (p < 0.001).Conclusions: EMP exposure significantly decreased the bioactivity of insulin to reduce the blood glucose levels in type I diabetic mice. This could be due to a decreased binding affinity between insulin and its receptor. This mechanism could involve an alteration of insulin's' conformation caused by EMP exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.