Abstract

In this paper, we demonstrated the encapsulation of Mn/Cu/Fe-doped and co-doped ZnS nanowires (NWs) and ZnO quantum dots (QDs) with a layer of mesoporous SiO2 shell for the purpose of integrating dual emission and ferromagnetism property into one common nanostructure at room temperature. Within the ZnS:Mn2+Cu2+Fe2+/ZnO@SiO2 nanocomposites, ZnS:Mn2+Cu2+Fe2+ NWs and ZnO QDs provided color-tunable visible emission and UV emission, respectively. The color-tunable visible emission in the ZnS:Mn2+Cu2+Fe2+ NWs can be obtained by adjusting the concentrations of Mn2+, Cu2+, and Fe2+ ions. The ferromagnetism of the ZnS:Mn2+Cu2+Fe2+ NWs was observed around room temperature, the mechanism of which was explained by the super-exchange mechanism. The results of the effect of the ZnO QDs shell thickness on the optical properties of the ZnS:Mn2+/ZnO@SiO2 nanocomposites showed that the luminescence intensity of the yellow-orange emission and UV emission reached the highest value when the ratio of ZnS:Mn2+/ZnO equaled 1:5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.