Abstract

Finite element (FE) method has been used to calculate stress in the periodontal ligament (PDL), which is crucial in orthodontic tooth movement. The stress depends on the PDL material property, which varies significantly in previous studies. This study aimed to determine the effects of different PDL properties on stress in PDL using FE analysis. A 3-dimensional FE model was created consisting of a maxillary canine, its surrounding PDL, and alveolar bone obtained from cone-beam computed tomography scans. One Newton of intrusion force was applied vertically to the crown. Then, the hydrostatic stress and the von Mises stress in the PDL were computed using different PDL material properties, including linear elastic, viscoelastic, hyperelastic, and fiber matrix. Young's modulus (E), used previously from 0.01 to 1000 MPa, and 3 Poisson's ratios, 0.28, 0.45, and 0.49, were simulated for the linear elastic model. The FE analyses showed consistent patterns of stress distribution. The high stresses are mostly concentrated at the apical area, except for the linear elastic models with high E (E>15 MPa). However, the magnitude varied significantly from -14.77 to -127.58 kPa among the analyzed patients. The E-stress relationship was not linear. The Poisson's ratio did not affect the stress distribution but significantly influenced the stress value. The hydrostatic stress varied from -14.61 to -95.48 kPa. Different PDL material properties in the FE modeling of dentition do not alter the stress distributions. However, the magnitudes of the stress significantly differ among the patients with the tested material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call